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FOREWORD I 

The analysis in this publication was intended to be an analytical tool to 

assist a study of latchups in support of the Magellan space project. The study 
is not yet completed but it is expected that the analytical methods that have 

been developed so far may have other useful applications in the analysis of 

integrated circuits and therefore they are published here as a separate report. 

The analysis applies to the steady state current distribution in a three 
dimensional integrated circuit. A device physics approach--based on a 

perturbation method--rather than an equivalent lumped circuit approach is 
used. The perturbation method allows the various currents to be expressed in 

terms of "elementary solutions" which are solutions to very simple boundary 
value problems. Work is continuing and it is hoped that there will be a Part 2 

report which applies the methods to the steady state characteristics of latched 
states. Examples which illustrate the use of the analytical methods are not 
given in this Part 1 report since this is expected to be discussed in detail in 
Part 2. Comparisons between theoretical predictions and measurements are also 

deferred to Part 2. The most obvious limitation of the present version of the 
analysis is that all depletion region boundary surfaces are treated as 

equipotential surfaces and this is why the report is subtitled, "A Simple 

Steady State Theory." 

applications but it is an obvious weakness in the theory when applied to 

latched states. This issue is expected to be confronted in Part 2. 

j 

This may be an adequate approximation in some 
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ABSTRACT 

The analysis applies to the steady state current distribution in a three 

dimensional integrated circuit. 

perturbation method--rather than an equivalent lumped circuit approach is 

used. 
terms of "elementary solutions" which are solutions to very simple boundary 

value problems. 

A device physics approach--based on a 

The perturbation method allows the various currents to be expressed in 

The most obvious limitation of the present version of the analysis is 

that all depletion region boundary surfaces are treated as equipotential 
surfaces and this is why the report is subtitled, "A Simple Steady State 
Theory." 

an obvious weakness in the theory when applied to latched states. 

This may be an adequate approximation in some applications but it is 

Examples that illustrate the use of these analytical methods are not 
given in this report because they will be presented in detail in a future 

report. 
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SECTION 1 

INTRODUCTION 

The analysis in this report was intended to be an analytical tool to 

assist a study of latchups in support of the Magellan space project. An 
investigation of the application of this method of analysis to the steady 
state characteristics of latched states has not yet been completed. A time 

dependent version of this analytical method has also not yet been completed 
but work is continuing in these areas. So far, the analytical method, 

applicable to the steady state current distribution in a three dimensional 

integrated circuit, is reasonably well developed. Some work remains, as will 

be pointed out below, before it will be effective in the study of the steady 
state characteristics of latched states but it is expected that this analytical 

method will have many useful applications in its present stage of development. 

Therefore, it has been published here as a separate report. It is anticipated 

that there will be a Part 2 report which discusses the application of this 

theory to the steady state characteristics of latched states. Examples which 

demonstrate the use of the analytical method are not included in Part 1 since 

this will be treated in detail in Part 2. Comparisons between theoretical 

predictions and measurement are also deferred to Part 2. The most obvious 

limitation of the present version of the analysis is that all depletion region 

boundary surfaces are treated as equipotential surfaces and this is why this 
report is titled "...Part 1: A Simple Steady State Theory." This 

approximation is probably adequate in many applications but it is a definite 
weakness in the theory when applied to latched states. If there is not a more 

elegant way to deal with the boundary values at a depletion region, we could at 
least partition it into sections with each section treated as an equipotential 

surface. 
region surface as an equipotential. 

that we correctly represent the tangential currents that flow inside the 

depletion region between adjacent sections and it is not obvious at this time 

how to do this. This issue will be confronted in Part 2. Finally, it is 

hoped that there will eventually be a Part 3 report which discusses transient 

conditions. 

This would be an improvement over treating the entire depletion 

However, such a partitioning would require 

1-1 



The customary method of analyzing the behavior of a real (three 

dimensional) integrated circuit is to simulate the device with an equivalent 
lumped element circuit. A problem with using a lumped circuit to simulate a 

distributed system is that the interactions between various regions in a device 

are not the same as they would be if the various regions were separated and 

connected by wires. It is sometimes difficult to determine representative 

values for the circuit elements used in an equivalent circuit. This is 
especially true for the gains of parasitic transistors when the device is in a 

latched state [l]. These problems can be avoided by treating the device as a 

distributed system, which is what it is. 

that the governing equations are nonlinear and difficult to solve unless some 

approximations can be made. 
treat the electric field as a perturbation, that can be treated by first order 

perturbation theory, in the quasineutral regions of the device. This produces 

a system of linear differential equations in the quasineutral regions and a 
superposition principle will be used to construct solutions out of "elementary" 

solutions. The elementary solutions satisfy very simple boundary value 

problems. 

of junctions (e.g., depletion regions, high-low junctions, etc. ), will have to 
be satisfied and this will result in a system of nonlinear equations. However, 
these equations will be algebraic rather than differential equations. The 

elementary solutions will be used to construct various constants (the constants 

will be surface or volume integrals of these solutions). 

be analogous to device parameters (e.g., resistances) used in an equivalent 

circuit simulation and they can be evaluated either experimentally or by 
analytically or numerically solving very simple boundary value problems. 

the constants regarded as known quantities, the algebraic equations which 

represent the boundary conditions can be solved. 

A difficulty with this approach is 

An approximation proposed in this report is to 

Boundary conditions, which represent the effects of various kinds 

These constants will 

With 
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SECTION 2 

APPROXIMATION FOR THE ELECTRIC FIELD 

Consider a quasineutral region which is denoted by R and assumed to be 
homogeneous. The well-known equations for the electron and hole currents are 

+ 2 
P P vT 
J = eD [- 8p + p -1 

+ + E = eDn [8n + n -1 
Jn vT 

(la) 

where VT = KT/e is the thermal voltage and the other symbols have the 

obvious interpretations. 

"applied" electric fields are much stronger than the fields associated with 

space charge separations in R and we make the approximation that the field 2 
in (1) is the applied field. 
charges induced by an external power supply rather than charges on the 

interior of the homogeneous region R. 
is the assumption that the electric field in (1) has a zero divergence in R. 

This approximation (which obviously does not apply inside transition regions) 
is nothing new. 

assuming ohmic drops and solving Laplace's equation [ 2 ] .  

to the assumption of zero charge densities in the quasineutral regions. 

However, "applied" field has not yet been precisely defined. 
quantitative statement made so far is that it has a zero divergence in R. 
is not completely specified until boundary values are specified for the 

potential that the field is derived from. Approximations that will be used 

for the boundary values will be discussed in the next section but, ideally, 

the potential that the electric field is derived from is to be the same as the 

"applied potential" which is defined more rigorously in discussions of 

quasi-Fermi levels. 

Since R is a quasineutral region, we assume that the 

This applied field is associated with surface 

So the first approximation that is made 

Current induced voltage drops are typically solved by 
This is equivalent 

The only 
It 

Working with this kind of potential makes it unnecessary 
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to subtract out the built-in equilibrium potentials associated with each 

transition region in order to compute terminal voltages. 

An additional approximation will be the use of first order perturbation 
theory, with the electric field regarded as the perturbation. There are 

intuitive reasons why we might expect first order perturbation theory to work, 

but the reasons applicable to majority carriers are different than the reasons 

applicable to minority carriers. 

current is typically small compared to the diffusion current since most of the 
drift current is carried by the majority carriers. In many situations, the 

drift term in the minority current can be completely neglected [31.  

situations where it can't be completely neglected, it is reasonable to expect 

that it can be treated as a small perturbation. In the case of majority 
carriers, the drift term can't be treated as small since it is often the 

dominant term. However, the success of first order perturbation theory does 
not necessarily require that the perturbation be small, it does require that 

the higher order terms in the expansion of the unknown function be small 

compared to the linear terms. 

calculate current induced voltage drops suggests that the majority current is 
approximately a linear function of the applied electric field (this is not the 
same as saying that currents are linear functions of terminal voltages. 
Nonlinearities result from boundary values at various junctions) and this 
suggests that first order expansions may be adequate. 

In the case of minority carriers, the drift 

In 

The customary use of simple resistances to 

Although the electric field in (1) will be approximated as being the 

applied field, the field is still an unknown (if it were known, perturbation 
methods would be unnecessary because the equations would already be linear) 

because some of the boundary values that control it are unknown. In fact, 

these boundary values will be the parameters used in the perturbation 

expansion. 
of the perturbation method are discussed. 

Therefore, boundary values should be discussed before the details 
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SECTION 3 

BOUNDARY CONDITIONS 

The boundary surface of the region R is assumed to be composed of discrete 
sections where any given section is either an insulated surface (oxide layer 
o r  semiconductor to free space junction), depletion region surface, metal to 

semiconductor contact, or a high-low junction. 

For each boundary surface that separates two interacting regions, the 

boundary conditions will be characterized in two different ways. 
characterization states the general class (e.g., Dirichlet, Neumann or 

The first 

mixed) that the boundary conditions fall in. A typical example of such a 

characterization is the statement that the potential and carrier densities are 

assumed constant on a given surface. The values of these constants, i.e., the 

boundary values, are often unknowns and must be adjusted to satisfy the second 

characterization (discussed below). The first characterization will be used 

when working with the differential equations to express solutions in terms of 

the unknown boundary values. Later, after the equations have been reduced to 

algebraic equations, the second characterization is to be used to complete the 

solution. 
sides of a given surface. 

interested in solving for majority and minority currents and/or densities, 
four equations are needed for each boundary surface. In their most simple 

form, the equations would be specifications of both kinds of carrier densities 

on both sides of the surface (in this context, "surface" refers to a junction 
even though it has a finite thickness so carrier densities can be different on 

different sides of the surface). More generally, the equations could include 

a relationship between carrier densities on opposite sides of the surface and 

a relationship between current densities on opposite sides of the surface. 

Since the potentials are also unknowns that must be solved, the boundary 

conditions must also contain enough information to specify the potential on 

both sides of the boundary surface. Altogether we will need six equations for 

each boundary surface that separates interacting regions. The surfaces of 

this type that are discussed in this report are high-low junctions and 

The second characterization relates boundary values on opposite 

If  all potentials were known quantities and we are 
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depletion regions. Surfaces that are not of this type are insulated surfaces 

and metal to semiconductor contacts. For these surfaces it is only necessary 

to solve the equations on one side of the surface. Therefore, only three 

boundary conditions (applicable to the relevant side of the surface) must be 

given. This information is built into the first characterization of the 

boundary conditions so only the first characterization is needed for such 

surfaces. 

A. INSULATED SURFACES 

To find the boundary conditions for the potential, we use the same kind 

of reasoning that would be used if Ohm's law could be applied to the region R. 

There will be surface charges on the boundary surfaces of R associated with 
the applied voltages. If we look within the surface charge layer we would see 

a normal component of the gradient of the charge density and we would see drift 
currents and diffusion currents opposing each other and Ohm's law would not 

apply for any kind of material. 

Laplace's equation here. 
(in this context, "below'' means locations on the interior of R that are very 
close to the surface charge layer) and assume Ohm's law to apply, we would 

conclude that the electric field has a zero normal component at these 

locations. Therefore, the boundary condition that will be used for the 

applied potential is 

Furthermore, the potential does not satisfy 

But if we look just below this surface charge layer 

if& . ii = 0 

A 

where K is the unit vector perpendicular to the surface. Note that the 

boundary condition ( 2 )  is expected to provide an approximation for the 

potential on the interior of R but this region excludes the surface charge 
layers. 
currents flowing through the surface charge layers. In particular, the 

current under the insulated gate of a MOSFET is excluded. Since this current 

can be important, it must be included as a separate term. 

The currents calculated from this potential exclude the tangential 
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Boundary conditions for the carrier densities will make use of the 

familiar recombination velocity which gives 

9 9 

J , .  Jn 3 K = ~ ( p  - Po) = - - 0 K e e for n type 

t t 

A 

where n and p are the equilibrium carrier densities in R and K is the 
outer normal unit vector and S is the recombination velocity. The first 

equations are used if R is composed of n type material and the second are used 
if R is p type. Since the drift currents are assumed to be tangential t o  the 
boundary surface, the above equations become 

0 0 

-D ? p = S(P - Po) = -D ? n 0 i for n type 
P 

-D ? p i = S(n - no> = -D 9 n i for p type. 
P 

(3a) 

(3b) 

B. DEPLETION REGIONS 

The two boundary surfaces of a depletion region are each assumed to be 

a constant potential, constant n, constant p surface. Using these 
approximations, boundary conditions are of the f o r m  

9 
4 ( X )  = 4 = constant (4a) 

9 
n(x) = n = constant (4b 1 
9 

p(X) = p = constant. (4c 1 

The boundary values are not independent and at some stage in the analysis they 

must be adjusted to satisfy certain conditions. If the junction is abrupt and 
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if recombination in the space charge region can be neglected, it is shown in 

Appendix A that the conditions are 

where 

n 
n NAp + NDn 
on g-l 

op 
n 

n I3 Pon - on g-1 - - 
OP 

' NDn + NAp 
5 P  

op P 

n on 

g-l - h g 
n Pon on 

5 g-l 

op g-1 - h g 
NDn + NAp 'on 

P 

'on on n 

and N are the donor density on the n side and the acceptor density on 
NDn AP 
the p side. 

denoted by p 
are p 
The equilibrium densities can be solved from 

The hole and electron carrier densities on the p and n side are 
while the equilibrium values of these densities and n p, Pn' np n 
The potentials on the two sides are $ and $n. on P n and n op' 'on' op 

2 n. 
exp [AVn/VTl i - -  

NDn 'on - (7a) 
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2 n. 
exp [AV /V 1 

P T  
n - -  op - N 

1 

AP 

2 n. 
1 

= N + - exp [AV /V ] Ap P T  

2 
n, 
1 n = Nh + - exp [AVn/VTl 
Nh on 

where n i 
and AVn and AV in the n material and p material 
respectively with AV an empirically determined function of the doping 

concentration. Empirical information on AV has been provided by Slotboom 

and De Graaff 141 . 

is the intrinsic carrier density (the density in a pure material) 
are the values of AV 

P go 

go 

go 

To the equations we must add 

A -B 

Jp I n side p side 

,. -B -B 

J n e K I  n side p side 

C. HIGH-LOW JUNCTIONS 

(7c) 

The two boundary surfaces of a high-low junction are each assumed to be a 
constant potential, constant n, constant p surface so the boundary conditions 

are of the form ( 4 ) .  

As with the depletion region, the boundary values must satisfy certain 
conditions. If the junction is abrupt and if recombination in the space 

charge region can be neglected, it is shown in Appendix A that these 

conditions for an n-n junction are + 
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n 

n 
oh B-l 

NDQ - NDh oQ 
- Poh oh B-l - 0 - -  

oQ 'OQ 

- 
n 

n 

- 
p,h 13 NDQ + NDh 
'OQ 
n 

n 
oh f 1  - p,h 
oQ ' o  Q 

- 
'OQ R-l 

'oh NDh + ND!?, 

poQ B-l 

- 
n =  

B - -  
oh 'oh 

h n 

n 

2 

'oQ NDQ 

n i - -  - 

2 n 
exp [AV /V,l i - -  - 

'oh NDh go 

2 *: I n = NDQ + - 
oQ N~~ 

2 
n, 
1 n = NDh + - exp [AV /V,] . 

oh NDh go 
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The symbols are the same as with the p 
h, which refer to the lightly doped and heavily doped regions, replace p and n. 

AV refers only to the heavily doped side. For a p-p junction, the equations 

are 

junction except that subscripts Q and n 

+ 
go 

I 

n 
n 
oh 13-1 

NAQ + NAh 

n 

n 

- -  
oQ 

oh 13-1 1 3 - -  
oQ 

p,h 
'oQ 

oQ n 

oh ' NAh + NAQ 
n 

n 

- -  
n 

- -  OQ I3 p,Q 13-1 
oh 'oh 

p,h 13 NAQ - NAh 
POQ 
n 

n 
oh f1 - poh 13 

oQ 'oQ 

'OQ 13-1 

'oh NAh - NAQ 
- 

n A,-- poQ *-l 
n oh 'oh 

2 n. 
exp [AV /V,l 1 n = -  

Oh NAh go 

2 
n = -  

n i 
'a N~~ 
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I 

In both cases we have 

+ d ,. 

Jp ' I high side = Jp I low side 
,. d d A 

n J n ° K J  high side = I low side . 
D. METAL TO SEMICONDUCTOR CONTACT (OHMIC) 

Metal to semiconductor contacts will be assumed to be equipotential 
surfaces with an infinite recombination velocity. 
of the form 

Boundary conditions are 

d 
@(XI = 4 '  = constant 

0 
n(2) = n 

1 

If the contact resistance can be neglected, 4 '  in (16a) is the potential of 
the contact lead. If this resistance must be included, it can be simulated by 

placing an imaginary resistor between the contact and the contact lead. In 

this case, 4 '  would be the potential on the contact side of the resistor. 

3-8 



SECTION 4 

CALCULATION OF CARRIER DENSITIES IN TERMS OF BOUNDARY VALUES 

This section will relate carrier densities to the boundary values by 
assuming boundary conditions to be of the form ( 2 ) ’  ( 3 )  o r  ( 4 ) .  

values will usually be unknown and must be adjusted to satisfy equations like 

(5), (8) ,  ( 9 )  and (15) but these adjustments are to be made after algebraic 
equations that relate currents to boundary values are obtained. 

Some boundary 

To be definite, suppose the region R is an n type material. Note that 
all boundary surfaces except the insulated surfaces specify Dirichlet boundary 
conditions f o r  4, p and n. Imagine the boundary surface of R to be the union 
of surface sections with the ith section denoted by Ai. Let INS and OTH be 
index sets such that: 

If iEINS then A. is an insulated surface with boundary conditions 
1 

9 4 ii = 0 ,  -D is p ii = si(p - pol, - D ~  9 n ii = si(p - Po). 
P 

If iEOTH then Ai is any surface other than an insulated surface and 
has boundary conditions 4 = Vi, n = ni, p = pi. 

In this section, n and p refer to boundary values on the ith surface rather i i 
than intrinsic densities. 

Define 

N = n - n  P = p - p o .  
0’ 

Using (1) and the equations 131 
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gives 

P V2N + 8 h = -j 

vT Ln 

L = (Dn=)'l2 are the diffusion lengths for holes and where L = ( D p ~ )  
P 

electrons and 'I: is the recombination time. The boundary conditions can be 

expressed as 

n 

+ 
If i E INS and X on Ai then 

~ -S.T 
P $ P * K =  - 1 

- 2  L 
P 

I -S .T 
1 $ N * K =  - P .  

- 2  L n 

+ 
If i E OTH and X on Ai then 

+ = vi 

P = Pi 

N = N i .  

+ 
For each j E OTH, define a function +.(XI by the conditions 

3 

v2 +j = o in R 

+ 
If i E INS and X on Ai then = 0 9 
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If ieOTH and f on Ai then 4 = 6ij 
j 

where 6ij is the Kronecker delta. Note that the sum 

1 v. $ . ( f >  
jeOTH J J  

satisfies Laplace's equation in R and the boundary conditions imposed on the 
potential 0. It is well known that solutions to such problems are unique so 

we have 

The + . ' s  are not all independent. The sum 
1 

is one on every noninsulated surface and has a zero normal gradient on the 

insulated surfaces. The constant value 1 satisfies Laplace's equation and also 

has these properties which implies 

+ c Cbj(X) = 1 . 
j EOTH 

Constraint (22)  is consistent with the well known fact that any potential can 

be chosen as a reference and set equal to zero, which eliminates one of the 

functions that must be included on the right side of (21). 
potentials are set equal to zero, (22 )  can still be used to reduce the number 

of boundary value problems that must be solved in order to obtain all of the 

If none of the 
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Using (211, the electric field is given by 

so (17) becomes 

V2P + ?P 1 vj 9Oj = - P 
jsOTH L2 

P 
vT 

P 

jeOTH 

Equations (24) and the boundary conditions (18) and (19) define P and N as a 
function of the Vi's, i.e., 

It is assumed that the functions can be expressed in a series of the form 

where 01(2) and 02(2) represent terms of second or higher order in the Vi's. 

Parentheses are used to emphasize that the superscripts are indices rather 

than exponents. 

powers of the Vi's yield 

Substituting (25) into (24) and equating coefficients to like 

L 
P 
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2 v p . + -  

P 

L n 

v 2 n j - -  

n 

By using the identity 

2 2 V2(fg) = 2isf isg + fV g + gv f 

2 together with V 4 = 0 and (261, we can express (27 )  as 

2 1 ( 0 )  1 1 ( 0 )  v CPj + - P 4j1 = 2 [Pj + - P 4j1 
L 2vT 
P 

2vT 

Also, (26 )  and (28 )  can be combined to give 

(30) 

To obtain boundary conditions satisfied by the 0 ' s  and p ' s ,  first consider 
+ 

an insulated surface A.. From (18b) and (25a) we have, for X on Ai, 
1 

A sil: 
+ [ i s  01(2)  K + 2 0 1 ( 2 ) ]  = 0 . 

z L 
P 
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This is to be satisfied identically in the V's which gives 

with analogous equations for the q ' s .  

that (19b) be satisfied identically in the Vi's give 

Note that (25a) and the requirement 

(0 1 
p = Pi, p j  = 0 

on the noninsulated boundary surfaces. The boundary conditions are summarized 

below. 

For each jeOTH we have: 

If ieINS and 2 on di then 

L 
P 

-s.r 
dpj K = - 1 

L2 
P 

-S.T 
dqj K = - 1 

2 p j  . 
Ln 

9 If icOl" and X on Ai then 

p ( 0 )  = p .  
1 

(32b) 
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For each jeOTH, define the function by the conditions: 
j 

If ieINS and t on Ai 

~ -S .T  
%pj K = - 1 

L2 
P 

If ieOTH and f on Ai 

qj - - 6ij . 

then 

'j . 

then 

(35) 

(36) 

It is evident that the sum 

1 p j  'j 
j EOTH 

satisfies the same field equation and boundary conditions as p ( O ) .  

in Appendix B that solutions to such problems are unique which implies 
It is shown 

P ( 0  1 = c P j ' j '  

j EOTH 

From (30) it is seen that 

(37) 

4-7 



satisfies the same field equation as q. .  Note 
3 

Using (32b), (20b) and (32a) shows that on the insulated surfaces, 

which is the same boundary condition satisfied by 

Also, on a noninsulated surface A 

on the insulated surfaces. 
j 

we have from (33a), (33b) and (20c) that i' 

P 
1 ( 0 )  - __ pi -i - 

P j  + - P + j  - 2VT 'ij 2vT 'ij 2vT 

which are the same boundary conditions satisfied by 

We therefore have 

P 1 ( 0 )  - i 
p j + - p  + j  - 2vT "j 2vT 

or, using (371, 
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Now consider the expression 

It is seen from (31) that this expression satisfies Laplace's equation inside 

R and from (32a) and (32c) it is seen that on the insulated surfaces, 

From (33a) and (33c) it is seen that on a noninsulated surface Ai we have 

The expression 

L2 

j EOTH 

also has these properties so we conclude 

4-9 



or, using (371 ,  

L L 

L: jsOTH ' jeOTH 
rl ( O )  - - 1 P. 9. + 1 (Nj  - 

Equations ( 3 7 ) ,  ( 3 8 )  and ( 3 9 )  solve for p('), p j  and q ( O )  in terms of the 

elementary functions 9 and 4 
contained a plus sign instead of a minus sign, q 
the same basic methods that were used to solve for the other quantities. As 
it is, q is not easy to solve. 

interested in the majority carrier density away from the boundary surfaces 
except for the purpose of calculating the gradient in order to obtain the 

diffusion current. 
not necessary to solve ( 2 9 )  to do this. 

If the second term on the left side of ( 2 9 )  
j j '  

would be easy to solve using 
j 

However, it is unlikely that we would be 
j 

Fortunately, as will be shown in the next section, it is 

The important equations in this section and the analogous equations that 

apply to a p type material are listed in the summary table which follows the 
next section. 
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SECTION 5 

EXPRESSING CURRENTS IN TERMS OF THE BOUNDARY VALUES 

The previous section related carrier densities to the boundary values 

(some of which will usually be unknown) and the elementary functions +j, qj. 
This section will do a similar thing for the currents through a given 

noninsulated surface. 
insulated surface is also easy to express in terms of the elementary functions 

(this also solves for the majority carrier recombination current since the net 
current is zero) but these currents have no immedidate use in the analysis 

presented here. Therefore, we will confine our attention to the noninsulated 

boundary surfaces. 

The minority carrier recombination current at an 

For notational brevity in the equations that will follow, some constants 

will now be defined. For each i and j in OTH, define Qij and Rij by 

where the integrals are 

normal vector is in the 
region R. 

Rij is 

law medium, 

surface integrals on the Ai 

direction of K, i.e., it is 
A 

easily recognized as being proportional 

surface and the unit 
directed outwards from the 

to the current in an Ohm's 
through the surface A divided by the potential on the surface A 

i' i - 
is therefore Ri j 

is proportional to the current in a pure diffusive 

when all noninsulated surfaces except A are grounded. 
inversely proportional to an electrical resistance when the region R contains 
an ohmic material. 

medium (a medium that supports diffusion currents but not drift currents) 

through the surface Ai divided by the excess carrier density on the surface 
A. with the excess carrier density zero on all other noninsulated surfaces. 

Therefore, 

j 

Qi j 

J 
can be thought of as the reciprocal of a diffusion resistance. Qij 
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The constants Q.. and R.. are not all independent, there are several 
J-J 1J 

constraints connecting them. For example, using (36) gives 

But ( 3 5 )  gives 

-s 'I: + k 

P 
S qi 9 qj ds = - s qi Iyj ds 

L2 % % 

and Green's first identity gives 

Using ( 3 4 )  gives 

so that 

The expression on the right of the above equation is symmetric in i, j which 

proves the reciprocity relation 

Qij - - Qji 
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I 

A simpler version of the above proof will prove the well known reciprocity 
relation for the electrostatic potential which, in this notation, is written as 

Rij = Rji . (43 1 

Another constraint can be obtained by taking the surface integral of the 

gradient of both sides of (22)  on any noninsulated surface A The result is i' 

or 

1 Rij = 0 for any isOTH 
j EOTH 

(44) 

Equation (44) could also have been deduced by using (20b) and recognizing that 
$4. has a zero surface integral on a closed surface. 

J 

The hole current directed outward through a noninsulated surface A is i 
given by 

Using (19b) gives 

I 
- = - s  ? P o d s +  eD 

+ pi + Po + SA. 8 ds . Pi 

Ai vT 1 P 

To first order in the V ' s  we set 

c vj Pj (0) + P = p  
jsOTH 
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Using (23), (37) and (38) gives 

+ V P  
- 1 I G . f  j k 2VT Ai $ j d ' # k * d s  

and 

-B d $j  ds . 2 ds = - 1 Vj sAi + S 
Ai j 

Using (~OC), (36), (40 )  and (41), the equations reduce to 

v. - vi V 
+ 1 Qij - Pi i S d P * d s = I P . [ l +  ' 2vT Rij 

Ai j J 2vT 

+ s 2 ds = -1 Vj Rij 
Ai j 

so that 

pi !i v. - vi I 

eD 
Pi I Qij - (Po + 1) C vT Rij* 

j P J  
(47) 

It is to be understood that the summations are over noninsulated surfaces so 

the subscripts OTH to the summation symbols were left out. 

To express the majority current (electrons in this case) in terms of the 
boundary values, it is helpful to define the following additional geometric 

constants. 
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For i, j ,  k E OTH, d e f i n e  

can be obta ined  as fo l lows .  Green’s 
and R i j  

A r e l a t i o n s h i p  between Tijk 

theorem can be used t o  o b t a i n  

o r  



One constraint between the constants S can be obtained by using the 

divergence theorem with 
ijk 

to get 

Interchanging i and k and subtracting equations and then using (48) yield 

- + [bjk - & . . I  Rik (51) 
'kji - 'ijk 11 

Another constraint comes from (22) and (48) which immediately give 

1 Sijk = 0 . 
k 

(52) 

Equations (51) and (52) are the only independent constraints that this author 
has been able to find. If the reader is aware of any other constraints that 

are independent of (51) and (521, this author would appreciate being informed. 

The electron current through the surface Ai is given by 

or 
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Using (23) and (41) gives 

9 !.i 
I 

- = s 
eDn Ai j 'T 

n i 9 N ds - (Ni + no) 1 Rij . 

Using (25b), (37), (40) and (41) gives the first order equality 

(53) 

Note 

where the subscript INS means to integrate on the insulated surfaces. But 

(32b) and (32d) show that on the insulated surfaces, 

u n 

so that 

Since q if t$i is zero on all surfaces, the equation can be written as 
j 
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9 L 
9 

q d s  = 8[oi if q j  - r l j  if 4i1 d: - -J? 2 .f INS 0. 1 if p j  d s  
j 

Ln 
'A. 1 

Simi lar  s t e p s  produce 

9 9 + 
SA if p j  d s  = if p j  - p j  if $il ds - SINS 4 .  if p j  ds  . 

i 

Combining t h e  above equat ions  y i e l d s  

9 9 
L 

SA if q d: - -J? S if p j  d s  = $[$i if q j  - r l j  if $il ds  j 2 Ai 
Ln i 

2 L 

- 3 
n L 

9 9 p j  - p j  9 '$i] d s  . 

Green's theorem toge the r  wi th  ( 2 7 )  and (29)  g ive  

3 L 

q d: - SAi if p j  d s  9 = .f, 4i [v 2 q j  - -J? V2 p . ]  d X 
L 

3 j L2 Ln n 
'A. 1 if 

3 L 1 
= - .f, [$i if q ( O )  9 $j + 2 1  4. if p ( O )  9 g j ]  d X . 
'T Ln 

Using (37), (391 ,  (48)  and (491, t he  equat ion  becomes 

L L 

SA q q  * d : - $ J ' A i b p j * d : = L q  'T L2 k 'k ' ik j  
n n i j L 
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But, from (381, 

so the equation becomes 

+ 1 k 1  1 SA- 6 Q ds = - {- P. Qij - 2 Pi Rij - $ 6ij Pk Qik 
1 j 'T L: 

2 
Ln 
L2 k ijk + - 1 N T - 1 Pk Tijk + 2 1 Pk Sikj}. 

k 
P 

Combining this with (53) and (54) and using (50) finally produce 

- v. 
1 Rij 'i D V D 

- -  Ni 
eDn o Dn j T  j n 3 2vT 

- -(F + n + 2 pi )  1 i In 
Rij + 1 (Nj - $ P.) [1 + 

D v. - vi D V 
+ J C P . [ l +  I Qij + 2 $ 1 li 'k 'ikj D 3 2vT n j,k 'T n j  

(55) 

Equation (55 )  is a cumbersome way to express the electron current. A 

simpler expression can be obtained by making additional approximations which 

are based on the excess electron density being very small compared to the 

equilibrium density. In order to make use of this, it is necessary to be able 
to identify the quantities that are very small. T o  first order, the drift 
current is given by 

2 
-B eDn -B eLn (Jn)drift = - (N + n ) E = - 

=vT 
(N + no) B 

0 vT 

2 
eLn -* eLn(Ni + no) SA. 2 ds + . 2 

(In )drift = - S (N + no) 3 ds = 
=vT 1 

=VT Ai i 
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It is obvious that 

2 
2 -eLn 

9 ? +j ds eLn Ni J' g o d s =  9 -NiCV..fA 
TvT Ai "T j J i  

is a very small contribution to the drift current. It is reasonable to expect 

i' that this quantity is negligible compared to the total electron current In 
It is also reasonable to expect that if we sum the terms over i, the result 

2 

T j  k % 
-eLn -CVj l N k s  ? O j  ods 9 

TV 

is small compared to In . Note that 
i 

so the expression (56) becomes 

which can also be identified as a small quantity. 
compared t o  In 

This should be small 

regardless of how the Vj'S are chosen so the terms 
i 

should individually be small. 
in R, its maximum and minimum values are on the boundary surface of R. 

boundary values are zero and one so 4 k 
everywhere in R (this isn't strictly correct because the boundary values were 
not specified on the insulated surfaces, but it is still reasonable to expect 

4 But if the expression (57) 

Note that since +k satisfies Laplace's equation 

should be between zero and one 

The 

to be on the order of one or less everywhere). k 
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is small and if @ is on the order of one or less, it is reasonable to expect 

that the quantity 
k 

2 
eLn - V. S @ ? q ( O )  8 @. d3X =VT J R k J 

expression can be written as 

2 eLn V. 

=vT 

But if the above expression is small for independently chosen boundary values, 
the individual terms must be small, i.e., 

2 eL V 
=VT ’Q ‘kQj 

2 L2 3-3 
=vT L 

9 

n 
(NQ - 2 ‘Q) TkQj 

and 

(59) 

can each be identified as small quantities. Expression (56) and equation (41) 

produce other small quantities which are 

2 

- eLn Ni V j  Rij 
=vT 

(60) 

Combining (531, (54) and (55) and adding or subtracting terms that are of the 
form (58), (59) or (60) result in the approximation 

vi !!i 
vT 

L2 v. - v i  L2 
] Qij + 1 Rij [N. + P. (--I) - no]- 

L~ J 2 v ~  
1 

n 2vT j 

5-1 1 



The only motivation for including a small quantity of the form (60) in the 
above equation is to make the total current (electron plus hole current), as 
predicted by these equations, add up to exactly zero when summed over all 
noninsulated surfaces. 

The important equations f o r  both n and p type materials are listed in 

Table 5-1. 
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Table 5-1. Summary 

Ai denotes the ith section of the boundary surface of a quasineutral 
homogeneous region R. The index sets INS, OTH are defined by: 

If ieINS then Ai is an insulated surface 
If isOTH then Ai is a noninsulated surface 

Other symbols are defined as follows: 

N = Excess electron density 

P = Excess hole density 

"0 = Equilibrium electron density 

Po = Equilibrium hole density 

T = Recombination Time 

= Diffusion lengths for electrons and holes respectively 

= Diffusion constants for electrons and holes respectively 

= Thermal voltage 

Ln 3 Lp 

Dn, Dp 

VT = KT/e 

e 

K 

= Elementary charge 

= Normal unit vector directed outwards from the region R. 

th 1 
i Pi 3 Ii 

= Electron, hole, and total currents respectively through the i 
noninsulated surface. These currents are directed 
outwards from the region R. 

In 9 

a = Position vector representing the point of evaluation of a 
function. 

6ij = Kronecker delta 

Boundary conditions that are assumed for the carrier densities and applied 
potential are: 

If isINS then the surface Ai has a recombination velocity Si. 

If isOTH then the surface Ai has constant applied potential and 
constant excess carrier densities denoted by Vi, Ni, Pi. 

All summation symbols denote sums over the index set OTH. All surface 
integrals refer to a unit normal vector (K) directed outwards from the 
region R. 
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Table 5-1. Summary (contd)  

I f  R is  an  n Type Material 

For each jsOTH, d e f i n e  t h e  func t ions  $ j ,  q j  as s o l u t i o n s  t o  the  fol lowing 
boundary va lue  problems: 

V 2 O j = O a n d V  2 9 = ; i n R .  

P 
j L  

+ 
I f  ieINS and X i s  on Ai then 

+ 
If ieOTH and X i s  on A then  i 

$j  - - "j and q j  = 6ij  . 

To f i r s t  o r d e r  i n  t h e  app l i ed  vo l t ages ,  

where 

Define t h e  cons t an t s  

+ + 
= SA 9 qj d s  R . .  = SA d $ j  ds  

i 1J i Qi j 

(Note t h a t  Q i j  = Qj i ,  R i j  = R . .  and 1 R i j  = 0 ) .  
j 31 
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Table 5-1. Summary (contd) 
~~ 

To f i r s t  order we have 

R i j  
pi !!i 

eD 2vT j "T 

I v. - vi 
1 Qij - (Po + 1) 1 

Define the constants 

R .  1 and Skji - + [6jk - S . . ]  Rik 
1 (Note that Tijk - - - [ 6 i j  Rjk + Sik Rij 

and 1 Sijk = 0) . 
- 'jk i k  - ' i j k  13 

k 

To f i r s t  order we have 

vi - v. 
2vT 

D D 1 R i j  
!!i + l ( N j - f p j )  [ I +  

j n + P i )  1 Rij  
Ni n I 

i 

n j 'T - = -'T- + O D  eDn 

D v .  - vi D v 
I Qij + 2 $ Z 'k ' ik j  2vT n j , k  'T 

and 

1 3 v I .  
' = - ( - D  N . + D ~ ~ ~ + - D  P . + D  p ) Z i R  i j  e 2 1 1 1  2 P 1 P 0 j v ,  

vi - v. v 
' ] R i j + 2 1  i D  P S p k i k j .  + I (D, Nj - Dp Pj)  [1 + 

j 2vT j , k  "T 
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Table 5-1. Summary (contd) 
~~ 

If Ni, Pi, << no, an approximation for the current is 

'i !!i 
v. - v i  L2 

] Qij + 1 Rij [Nj  + P. (-- - 1) - VT no1 
2vT j ~2 2 v ~  n 

If R is a p Type Material 

For each jcOTH, define the functions @j, 9.j as solutions to the following 
boundary value problems: 

V 2 O j = O a n d V  2 9 =:inR. 

j L  n 

+ 
If i E INS and X is on Ai then 

+ 
If i E OTH and X is on Ai then 

4 j  - - 6ij and qj = 6ij . 

To first order in the applied voltages, 
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Table 5-1. Summary (contd)  

where 

Define the  cons t an t s  

(Note t h a t  Q i j  - - Q j i 9  R i j  = R . .  J1 and 1 R i j  = 0) . 
j 

To f i r s t  o r d e r  w e  have 

Ni !!i n. vi - v .  
- -  '1 Q~~ - (n + 1) 1 R~~ - 1 N .  [1 + 
eDn j J 2vT 

I 
1 

j T  
0 

Define the  cons t an t s  

1 R .  ] and Skji = Sijk + [bjk - 6. . I  Rik - 6 j k  i k  1 J  
(Note t h a t  Tijk - - - [ t i i j  Rjk + 6ik R i j  

and 1 S = 0 ) .  
k i j k  

To f i r s t  o r d e r  w e  have 

v. - vi 
1 R i j  2vT 

P i  'i 
eD = -(1 + Po + - D n Ni) 1 !!i R i j  - 1 ( p j  - - Dn N - 1  [1 + 

I 

D J  
P P j T  j P 

D 
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Table 5-1. Summary (contd) 

and 

v .  - v i  V 
- 1 (DP P j  - Dn N . )  [I + ] R.. + 2 1 Dn Nk SiEj.  

j J 2vT '' j , k  T 

If Ni ,  P .  << po, an approximation for the current i s  
1 

I 2 vi - v .  
- P i  = - -  Ln 1 N .  [1 + 
eD P Lp 2 J  j 2vT 
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SECTION 6 

RECOMMENDATIONS FOR FUTURE WORK 

The analysis presented was intended to be used as an analytical tool for 

the study of latchups but the study was not completed. It is expected that 
this analytical tool will have some useful applications in its present stage 

of development but some important work remains to be done before this tool can 

be applied to the study of latchups. 

Assuming that the first order perturbation method is valid, the equations 

listed in the summary table have general applicability to homogeneous quasi- 

neutral regions providing the boundary surface is partitioned in such a way 

that p, n and 4 are approximately constant on each noninsulated section. What 

is probably the most obvious weakness in the application of these equations is 

the assumption that an entire depletion region boundary surface is a constant 

p, n, 4 surface. The accuracy could be improved by partitioning the deple- 

tion region boundary surface into a few sections with p, n and 4 treated as 
constant on each section. However, such a partitioning would require that we 

properly account for the tangential currents that flow inside the depletion 
region between adjacent sections. It was not shown how to do this and this 

remains to be done. 

A time dependent analysis using low frequency approximations (where 
steady state equations are applied to the interior of the region but DC 
capacitances are associated with various boundary surfaces so that terms 
containing time derivatives of voltages are added to various currents) should 
be relatively straightforward but it was not done here. 

will be done in future work. 

It is hoped that this 

Examples which illustrate the use of the equations have not been included 

in this publication. It is expected that this will be done in future work. 

Last, but obviously not least, a comparison is needed between measurement 

and theory. This is also expected to be done in future work. 
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Some other assumptions that were made are not essential to the theory 

and are therefore not considered to be a weakness of the theory. These 

include neglecting recombination in the space charge regions, neglecting the 
possibility of avalanching in the depletion regions and assuming that 
junctions are abrupt. These characteristics have no effect on the equations 

listed in the summary table, which is the principal product of this 

publication. These characteristics affect only the relationships between the 

boundary values. Relationships that include such effects as avalanching, 
recombination or graded junctions could be used with the equations in the 

summary table without modification of those equations. 
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APPENDIX A 

HIGH-LOW JUNCTIONS AND DEPLETION REGIONS 

A - l  



High-low junctions and depletion regions are two examples of the general 
I 
I 

condition of a doping density that is variable in a narrow region of space 
which results in a reasonably well defined space charge region. The analysis 
to follow applies to this general category providing that certain 

approximations are valid. 

I 

We assume that a one dimensional analysis can be used and take the x axis 
to be perpendicular to the junction. Generalized transport equations have 

been provided by Overstraeten, DeMan and Mertens [ 5 ] .  When applied to the 

interior of the space charge region where the doping density is nonuniform, 
the equations contain an additional drift term and are written as 

J = eD * - (gt - DEV)] P ,X p [- dx VT dx 

where $t is the total (as opposed to applied) electrostatic potential and DEV 

and DEC are functions of the doping concentrations. The DEV and DEC used here 
differ from those used by Overstraeten et a1 by a factor of the electronic 

charge. 

carrier are small compared to the individual contributions [31. 

negligible recombination in the space charge region. The result is 

It is assumed that the net (diffusion plus drift) currents for each 
This requires 

* = -E d ($ - DEV) dx VT dx t 

PRECEDING PAGE BLANK NOT FILMED 
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If the boundaries of the space charge region are at x 
can be integrated to give 

and x 1 2’ the equations 

Let p,, no, 4 
and (A-4) to the equilibrium conditions gives 

denote the equilibrium densities and potential. Applying (A-3) 
0 

I 

so that (A-3) and (A-4) become 

where 

Ob) = Ot(x) - Oo(x) 

is the applied potential. To shorten the notation, define 13 by 

13 = exp C(O(x,) - (p(x,))/v,I 

(A-7 

(A-8 
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I 

I 

I 

so that (A-5) and (A-6) become 

P(X2) P0(X,) 

P(X$ PO(Xl) 
I3 - -  - (A-9 

(A-10) 

Let N (x) and N (x) be the density of donor and acceptor ions. Assuming space D A 
charge neutrality at x and x2 we get 1 

p(x2) - n(x2) = N A 2  (X - N~(x~) . 

Combining these equations with (A-9) and (A-10) gives 

(A-11) 

(A-12) 
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(A-13) 

(A-14) 

Since recombination in the space charge region has been neglected, we also have 

(A-15) 

(A-16) 

If the equilibrium carrier L2ns ties can be regarded as known, equations 
(A-11) through (A-16) constitute a complete system of equations describing the 

boundary conditions. 

method of estimating the equilibrium densities from existing empirical data is 

needed. Slotboom and De Graaff [41 have related the equilibrium densities to 
the intrinsic densities (the equilibrium densities of the material without 

doping) through the equation 

But to use these equations in a practical problem, a 

2 
Po no = n. exp [AV 

1 go /v,] 

where n 

function of the doping level. 

De Graaff. Applying this equation to x and x yields 

is the intrinsic carrier density and AV is an empirically determined 
i go 

Empirical values are given by Slotboom and 

1 2 

2 
po(xl) = ni exp ~~~go(xl)/VTl (A-17) 

2 
1 go p0(x2) no(x2) = n. exp [AV (x2)/VTl . (A-18) 
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1 If the junction is abrupt with the (known) doping concentration uniform on each 

side of the point of discontinuity, the doping concentrations at x and x 
are known without the need of solving for x and x 

2 1 
(for a more general doping 1 2 

I 
I profile, x1 and x would have to be solved and their values would depend on 2 

the doping profile) and AV (x 1, AV (x ) can be immediately evaluated from 
go 1 go 2 

the data provided by Slotboom and De Graaff. By assuming that the majority 

carrier density is approximately equal to the doping density, (A-17) and 

(A-18) can be used to solve for the minority carrier densities at x 1 
The equilibrium minority carrier densities can now be regarded as known. 
Approximating the majority densities with the doping densities may be adequate 

for the purpose of using (A-17) and (A-18) to solve for the minority densities, 
but it is not sufficiently accurate for other calculations for the following 

reason. If the equilibrium majority carrier density is set equal to the 

doping density, the error in the equilibrium majority carrier density will be 

equal to the equilibrium minority carrier density. If this error ultimately 

showed up in the nonequilibrium majority carrier density in the form of an 

additive constant, it would not affect the calculation of the diffusion 

current and it would negligibly affect the calculation of the drift current, 

so the error would be minor. But the error will show up in the nonequilibrium 

density in a way that is more serious than the error resulting from an 

additive constant. This is because an error in the equilibrium density will 

affect the boundary values of the nonequilibrium excess carrier density as 

calculated by (A-11) through (A-14). 

majority carrier density, but it may not be small compared to the excess 
majority carrier density. In fact, it is not difficult to show that the error 

in the calculated boundary value for the nonequilibrium excess majority 

carrier density (as calculated by (A-11) through (A-14)) exceeds the error in 

the equilibrium density. 

the excess density as a function of location, errors in the boundary values 

affect the solution in a nontrivial way and the calculated currents will have 
serious errors. Therefore, to calculate the equilibrium majority carrier 

density, we must be more accurate than simply setting it equal to the doping 

density. A more accurate treatment uses space charge neutrality to get 

2' and x 

This error is small compared to the 

When the diffusion equations are used to calculate 

P0(X,) - (A-19) 
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po(x2) - no(x2) = N (x - ND(X2) (A-20 ) A 2  

Note that this space charge neutrality condition is needed in order for (A-11) 

through (A-14) to predict the correct equilibrium (J3=1) values for the carrier 

densities. 

Example 1: High-Low Junction 

+ Consider an n - n junction and let x be on the heavily doped side. 2 
To use more suggestive notation, let 

n 

n 
oh R-l 
oQ NDQ - NDh 
- 

n 

n 
oh R-l R - -  - 'oh 

poQ oQ 

n 

n ' NDh - NDQ oh 
n 

n 
- poQ s-l - -  OQ s 

oh 'oh 

(A-21) 

(A-22) 

(A-23) 
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l3-I NDh + NDQ ' 0  Q 
'oh 

s - -  oQ n 

oh 'oh n 

- -  

' O Q  R-l - "h = (A-24 ) 

where 

Assume that AV 
value as simply AV on the high doped side. Equations (A-17) and (A-18) 

become 

is essentially zero on the low doped side and represent its 
go 

go 

2 
POQ N~~ = ni 

'oh NDh - i go 
- n2 exp IAV /V,I . 

Combining these equations with (A-19) and (A-20) yields 

2 
i n 

n -  
OQ - N~~ + 

Using the same analysis for a p - P+ junction yields 

(A-26 ) 

(A-27) 

n 

oQ n 

- 'oh 

'OQ 

oh R-l 
NAQ + NAh 

n 

n 

- -  
- 

oh 13-1 R - -  
- 

oQ 
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oQ 

oh 

n 
n ' NAh + NAQ 

n 

n 

- -  

- -  OQ B p,a R-l 

oh 'oh 

'oh 

- 'OQ 
oh B-l 'oh 

oQ ' 0  Q n 

NAQ - NAh 
- 

"Q - n 

- 'OQ B-l 
'oh NAh - NAQ 

nh = noQ 'OQ B-l - B - -  
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2 
n: 

Example 2: PN Junction 

Let x be on the p side and x2 be on the n side. To use more suggestive 1 
notation, let 
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I3 NAP + Nh 
pop n =  

I3 P n  - on 13-1 - pOn 
n 
OP 

POJ 13-1 

op a-1 - 2E a 
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n P  

n 'on on 
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while (A-17) through (A-20) imply 

1 n - -  exp [AVp/VTl 
AP 

op - N 

2 n. 

2 
i n 

non = N,,,., + - exp [AVn/VTl . 
NDn 

A-12 



APPENDIX B 

A UNIQUENESS THEOREM 

B-1 



L 

I 

I Let a region R be bounded by a surface A. Consider the boundary value 

problem 

where f and g are specified functions and 
K is a constant satisfying 

is the outer normal unit vector. 

9 
At any point X on the surface A ,  the functions a and b are to satisfy one of 

the following conditions: 

Either 

ad) = 0 and b($) # 0 

or 

or 

It will be shown that the solution 9 is unique. Note that this is not the 
most general possible uniqueness theorem because of the conditions (B-21, 

(B-31, and (B-4) (there are also uniqueness theorems, for example, to the 
Helmholtz equation, which does not satisfy (B-1)) but it is general enough for 

our purposes since recombination velocities and diffusion lengths are positive 

quantities. 
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Let $ and 9, be two solutions to the boundary value problem and let 1 

$' = q2 - $1 (B-5) 

Note 

+ (v2 - K) $ 1  = o for x E R 

+ 
a(?) $ ' ( ? I  + b(?) 9 q ' ( ? )  = 0 for X E A . 

Green's first identity states that 

+ s, 9' v2 9' d3X + 1, 9 $'  $ 9' d3X = SA $' 'is 9' ds . 

2 Using (B-6) to replace 0 9' in the first integral gives 

Let A. denote the section of the surface A such that either (B-2) or (B-3) is 

satisfied. 
that 

Note that (B-7) combined with either of these conditions implies 

Therefore, 

where A '  is the section of A such that (B-4) is satisfied. Using (B-7) gives 
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I 
t 

so that (B-8) becomes I 

From (B-1) and (B-4) it is seen that the left side of the above equation is a 

sum of nonnegative quantities. Therefore, the equation implies 
I 

or, from (B-51, 
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